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Summary 

In this paper we present general equations for the treatment of sensitized 
reactions when two different excited states of the sensitizer both contribute 
to the photosensitization. In the case of diffusioncontrohed reactions, 
classical equations based on stationary diffusion are not valid under the usual 
experimental conditions and have to be modified. We propose a kinetic 
model which takes into account static quenching and non-stationary diffusion. 

l_ Introduction 

In a recent paper Wagner [l] has pointed out the interest in kinetic 
studies of inhibition for the determination of the lifetime of excited states 
and of the quantum yields of intersystem crossing. In particular, it is shown 
that the sensitization yield of electronic energy transfer gives valuable 
information including the detection of more than one donor excited state 
and the lifetimes of these states. An extensive set of relationships is given to 
aid the interpretation of experimental data. 

However, in the particular case of very short lifetimes, ranging from 
10 ps to 1 ns, the kinetics of sensitixation are in fact that of a practically 
diffusioncontrolled reaction, and lead for conventional solvents to the use 
of quencher concentrations between 10 and 0.1 molI1. If the reaction is 
not diffusion controlled the concentrations have to be much larger than this, 
a situation which cannot be realized in practice. Under these conditions the 
only answer is to look for diffusioncont transfer reactions. We have 
shown [ 2 - 41, in agreement with earlier studies (see for example refs. 5 and 
6), that for very short lifetimes, usually shorter than 100 ns, and in conven- 
tional solvents non-stationary processes must intervene; this does not allow 
us to use simplified relationships which require the apparent rate constants 
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to be time independent. Moreover, for the quencher concentrations concerned, 
static quenching can occur and can perturb the kinetics. 

We intend in this work to show the influence of the phenomena of non- 
stationary diffusion and static quenching on partly diffusion-controlled 
reactions of sensitization and to give a more extensive theoretical treatment 
in terms of a competition between “chemical” and “diffusional” kinetics. 

2. Review partly diffusion-controlled reactions 

2.1. Review of theprinciples of the treatmentof diffusion-controlled reactions 
The conventional treatment first used by von Smoluchovski [ 73 is as 

follows, where A and B are the reactive species (see Fig. 1). 
(1) A particular A molecule is used as a relative reference of the motion 

of surrounding B molecules in a system of spherical symmetry (i.e, the only 
space coordinate is the distance r measured from A). 

(2) To solve the description of the relative motion of these B molecules, 
we “superpose” a large number of particular systems as in (1) and define an 
average A molecule surrounded by a continuous distribution of B molecules 

O- o- a- 

Fig, 1. Ue of the superposition rule to obtain a mean continuous distribution of B mole- 
cules around A molecules. Al, AZ, . . . , A,, are particular A molecules surrounded by B1 , 
B2, 1.. . The lower curve is obtained by superposition of the representations above (U is 
the encounter distance). 
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(i.e. a local concentration [B(r, t)] ) to which Fick’s laws of diffusion can be 
applied. 

Let us note the following further assumptions. (a) The concentration of 
A molecules is sufficiently low so that they can be considered to be indepen- 
dent. (b) The relative diffusion coefficient of B towards A is taken as the 
sum of the diffusion coefficients of A and B, independent of concentration. 
(c) There is no mutual eleclxical potential between A and B. 

2.2. Mathematical treatment 
2.2.1. Strictly diffusion-controlled reactions 
Let us consider a homogeneous population of spherical molecules B in 

solution in an inert solvent and the generation at a time t = 0 of spherical 
reacting molecules A (produced by light excitation, for example). The mole- 
cules A react with the molecules B: 

A+B + C 

Let us then consider that every encounter leads to chemical reaction, 
i.e. that the reaction can occur during an infinitesimal time. Then we can 
determine the apparentrate constant k, (t) of the reaction using the following 
relation, given previously by Wilemski and Fixman [8] : 

&$(r,t)/i3t +@(r,t) = 0 (1) 

Here $ is a distribution function and is the ratio of the local concentration of 
B to the mean concentration ([B] > of B, i.e. #(r, t) = [B(r, t)] /([B]); r is the 
distance between the centres of a molecule A and a molecule B; gis the time 
evolution operator (relating to the diffusion process). For uncharged particles 
W@CSi.Ilwrite 

where D is the sum of the diffusion constants of the two species A and B and 
V2 is the laplacian operator. 

The resolution of this system leads to the classical expression of the 
apparent rate constant k,(t) [ 21, Le. to 

k,(t) = 47rNuD{ 1 + o(aDt)-1’2) (2) 

where u is the encounter distance (between the centres of the encountering 
molecules) and N is Avogadro’s number. 

At times much longer than 02/D, k,(t) is approximately equal to 4nNuD 
and stationary state diffusion takes place; the instantaneous rate constant 
then is almost time independent. 

In contrast, at times shorter than u2/D, or near to this value, k,(t) is 
time dependent; this leads to non+&ationary state diffusion kinetics. 

2.2.2. Reactions dependent in part on diffrtsion 
If the chemical reaction between A and B does not occur with an 

infinite rate constant, as supposed in Section 2.2.1, but occurs with a rate 
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constant k(r)* which is dependent on the distance r between A and B, the 
former treatment is no longer applicable and a new treatment is required. 

2.2.2.1. Equations which define the reacting system. Using the formula- 
tion of Wilemski and Fixman [ 8) and of Doi [ 91, relation (1) can be written 
as 

%(r, t)lat + C?@(r, 0 = --k(r)@@, t) (3) 

Knowing Q and It(r) it is possible to determine the variation of #(r, t) with t, 
either using Green’s functions [S] or using the Laplace transform or numerical 
techniques. The apparent rate constant is given by the expression 

k,(t) = ~4~?lVk(r)@(r,t) dr 
(I 

(4) 

2.2.2.2. Expression of ktrr). In the case where a chemical reaction occurs 
as discussed, the variations of k(r) are not well known and a simplified model 
must be used. Reaction or interaction between molecules requires the overlap 
of the external molecular orbitals of the two molecules. The value of the 
overlap of molecular orbit& is known (see for example ref. 10); it is a 
decreasing function of r and beyond a value of r of some &ngstrBms there is 
practically no overlap. In this sense the problem is very similar to the case of 
electronic energy transfer described by Dexter [ 11 J . 

In the case of resonance energy transfer described by Fiirster [ 121, the 
expression of k(r) is well known and rigorous computing could be possible. 
However, here we consider only interactions at short distances. 

In our model we suppose that k(r) is approximately constant and equal 
to a given value k for a distance smaller than a given value o’ (i.e. for u < r < 0’) 
and that k(r) is negligible for r greater than CJ’. Then expression (4) becomes 

k,(t) = j’4 nr2Nk$(r, t) dr (5) 
(J 

2.2.2.3. Expression of Q. The operator 9 is determined using classical 
macroscopic concepts well known in the case of diffusion in the solid state 
and also applicable here. The expression of the flow J of particles is given by 

J= -DV[B] (6) 

#(r, t) is derived from eqn. (4) together with Fick’s second law, i.e. 

&j/at = -VJ/[B] 

By assuming VD = 0, &I is given by 

(7) 

*For two particles A and B at a distance r, the probability of chemical reaction 
during time dt is equal to k(r) dt. 
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Thus a diffusion model is developed by considering two distinct volumes 
in the reacting system centred on a molecule A towards which molecules B 
diffuse (see Fig. 2): 

(1) areaction range comprised of thevolume between a sphere of radius 
0’ and a sphere of radius u wherein the chemical reaction occurs with a rate 
constant k; we assume that no diffusion occurs in this range, Le. #(r, t) is 
independent of F; 

(2) an external volume (r > a’) in which no chemical reaction but only 
diffusion occurs. 

2.2.2.4. Equations which define the system in our simplified model 
(see Fig. 2). For r > (T’ 

a4 - =DQ=@=D 
at (9) 

For (T Q r < (T’, the flow of molecules B at a distance u’ from A has to 
be equal to both the accumulation of B inside the reaction volume and the 
disappearance of B in the chemical reaction A + B + C, Thus, we must have 

~N(D’~ - ua) 
d#” 
- ([B]) + 
dt 

+* 3 ?rN(ore - u’)k@([B]) 

where #“represents the value of # inside the reaction range. 
The macroscopic bimolecular rate constant k, (molW1 s-l) is related to 

the rate constant k by the equation 

% = k,[A] [B”] = [A]lV[B”] j’4rrr’k dr 
u 

(a) (b) 
Fig. 2. Separation of space into two volumes where chemical reaction (r < a’) and dif- 
fusion (r > u') occur: (a) distribution at time t = 0; (b) distribution at time t > 0. 
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where [B”] represents the value of [ B(r, t)] inside the reaction range. Then 

k, = +rN(a’s - o=)k = NV’k = 4nNo’%k (11) 

with 

By including this macroscopic term in relation (lo), we obtain the following 
relation : 

kea’(a@/i3r),e = NK (d# /d% + k, (@)o1 

where kO = 47rNo’D. 
Equations (9) and (12) together define 

(12) 

the system. 

2.2.2.5. Apparent rate constant k,. Assuming T = DtfJ2, we obtain 
from eqn. (5) 

kp(r) = N&k&‘(r) = ~&O(T) (13) 
The variations of k*(r) are therefore given by the expression of #O(r). 

2.2.2.6. SimpLified relationships. At large values of time we obtain 

@O(T) = -& 1 + 
1 

& (IV)+‘2 1 

with 

P = kc/h, 
and 

k,(t) = ,““+“; 11 + 
kc 0’ 

0 c k, + kO (nDt)l” I 

(14) 

(15) 

This simplified relationship is identical with that proposed by Nemzek 
and Ware [ 51. 

When t increases infinitely we obtain 

lim k, e kc Or lim t=_L+’ 
t+= 1 + b/ko t+- ka kc K, 

(16) 

and when kc/k0 goes to infinity k,(t) becomes 

k,(t) = ko{l + o’(nDt)-1’2) 

which is identical with relationship (2) given in Section 2.2.1, except for the 
value of u which is now a’. 

Expression (15) can be used for experiments on fluorescence quenching 
using conventional flash excitation. 
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2.2.3. Consequences 
Consider the following scheme for the deactivation of x: 

A -k A? excitation 

k = I/rQ 
A* - . . . natural relaxation 

JW#JOW 
A* + B - _. . deactivation 

Then after 6 -pulse excitation 

d[A* J /dt = -_(k + ~,WW4”(f)3[~1 
Equation (17) leads to 

(17) 

1 d[A*] -- 
[A*] d7 

(18) 

with T = Dt/a”. Then if 

z(t)= ~~g(C~l/[A*l,=o) 
for small values of r (greater than or equal to 0.2), a good approximation 
the time evolution of Z(t) is 

of 

z(t) kko ([B])) t - (kck;2;ojs ([Bl) $--& -NK([Bl) 
kc +ko 0 

= -_at -_btl’” WC (19) 

with 

2.3. Photo~nsitization reaction 
Taking into account the simplifying assumptions given in Sections 2.1 

and 2.2, we can express the probability of photosensitization as 

A’+B + A+B* 

2.3.1. Probability of photosensitization at time t = 0 
This is derived from relationship (19) as 

pI = 1 - exp(-NVi([B])) (20) 

2.3.2. Wbability of photosensitization at time t > 0 
Knowing the concentration of A’ as a function of time we can calculate 

the rati of en- transfer 

r = k,(t)<[B])[A*] 



leading to a probability of sensitization over the lifetime of A* of 

pd = exp (--NV;< [ B])) 
I 
1 

kokc 
- 10’) (I+ ko + kc ~o(CBl) 

where 7. is the natural lifetime of A* and 

I( X’) = iexp (-a~ - h’z?) du 
0 

(21) 

1 
a=- + 

70 
,;f;. (WI) 

and 

20 k,2koro(CBl) 1 + k,ko -l/2 

"= (sTD+'~ (k, + ko)2 
k + k 7oWW 

c 0 

Then the overall probability of photosensitization can be written as 

P =Ps +Pd 

-1 

5% 1 - I(A’) exp (--NViC[B])) (1 + kkfi ~o([Bl) 
C 0 

2.3.3. Linear representation 
For long lifetimes of A” (in practice larger than 100 ns) and in usual 

(low viscosity) solvents it can be shown that 

x’= 0 1(X’) a 1 NV;([B]) = 0 

Then 

1 
-wl+ 
P 

(231 

(22) 

This relationship is close to that used by Wagner and coworkers [1,13,14]. 
Figures 3(a) and 3(b) show the effect of static quenching and non- 

stationary quenching on a plot of l/p against l/<[B]> in a practical example. 
In particular they indicate. that these phenomena lead to a much higher value 
of p and to a non-linear relationship between l/p and l/([B]). Moreover, if 
an approximate linear variation is plotted from experimental data, wrongly 
assuming the validity of relationship (23), incorrect values of the parameters 
are obtained, as pointed out in ref. 4. 

Besides, under these conditions it becomes very difficult to carry out a 
kinetic treatment capable of handling experimental data when two donors 
are involved since other problems arise. These are discussed in Section 3. 



4 
0 

(a) 

I 
I D 

1 I 1) 
2 4 6 8 0’ 2 4 6 0 

1 ,X(B)> mc& . I 1 /&+ mad . I 

(b) 

Fig. 3. Representations of l/p ua. l/( [ B ): (a) a strictly diffusion-controlled reaction, 
k,~k~,a~6~,D=1.1X10~6cm2s~ 1 ; (b) a partly diffusion-controlled reaction, 
kc/k0 = 3, u - 6 A, D = 0.1 x 10P5 cm2 e-l, 0’ = 10 A. In both cases curve 1 is drawn 
from relation (23) by neglecting static quenching and non-stationary diffusion, curve 2 is 
drawn from relation (22) assuming no static quenching (a = U’ = 6 &) and curve 3 is 
drawn from relation (22) taking into account both static quenching and non-stationary 
diffusion. 

3. Photosensitization where! two electionically excited donor states contribute 

Let us consider the following scheme [l] : 

where al and a2 are the probabilities of formation of AI and A2 respectively. 
We shall amune in the following that the reacting distance u’ is the same in 
both sensitization processes. 
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The kinetic treatment can be carried out to give the values of the rate 
constants. However, relationship (15) giving the rate constant of sensitization 
is not valid in this case. It is derived by expressing the diffusion of B mole- 
cules around an average A molecule starting from a random distribution at 
time t = 0 of the appearance of A. In the case of two interacting donors A1 
and A,, when such an excited molecule is formed by irradiation, relationship 
(15) is in general still valid. However, when A1 for example originates from 
the other type A2 by intersystem crossing, the distribution of B molecules is 
no longer random at time t = 0 because it is that which was around the Aa 
molecule at the time when it was generated from an A1 molecule. Tbis inter- 
connection between the distribution functions of B, c$~ around Al and & 
around AZ, is schematically represented in Fig. 4; the evolution during dif- 
ferential time dt is decomposed in two parts, the diffusion of B around A1 
and A2 and then the exchange between A1 and A2 by intersystem crossing 
which alters the distribution functions # 1 and $ 2. 

distribution around A, distribution around A2 

I , w 

spontaneous 
evolution 
during dt 

Fig. 4. Representations of the infiuence of exchange between Al and A2 on the distribu- 
tion functions @I and ~$2. 
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3.1. Equations defining the reacting system 
3.1 .l . Time evolution terms of $1 and @o for r 2 Q’ 
Led [B, (t; t)] and [B2(r, t)] be the xnean local concentr+tions of B 

around Al and AZ respectively and let us consider that, at time t = 0, Nz and 
Ni molecules of the types A1 and A2 respectively are formed. 

At time t theee numbera become NI (t) and N2 ( t) and their values at 
timet+dtcanthenbede-rivedasfollows: 

NI(t + dt) = NI(t) - cNI(t) + kudtAL2(t + dt) 
71 

N%(t + dt) = N,(t) - -%V2(t) + &12dtNI(t + dt) 
72 

where 

WI = klo + k12 + k,MW~W 

11~~ = kao + kzr + kC2<[B]>&(t) 

#z and & are the values of the configurational distribution functions $1 and 
#2 at distance u’. The time evolutions of the concentrations [B,(t, t)] and 
[B2(r, t)] are then expressed as, for example for B1, 

IBl(r,t + WI W(t + dt) = WMr,t)l -$#W,t)l WNdW - Wn) + 
+ [B2(r, t + dt)] kn dtN2(t + dt) 

which become 

Wll 
- +@11 =h at 2 W321 - [Bll) 

m21 
- +53B,] = k12- 

at 2 (C&l - U321) 

This can be expressed in terms of the configurational distribution functions 
#1 and 9% and of the concentrations [A,] and [Aa] of the donors: 

ah CA21 

-z 
+Gh=kcn- lAl, ($2 - $1) 

* 

Ti 
+'%=k12 ~@1-@2, 

2 

Introduction of s= -DV2 as the time evolution operator gives 

* 
- =D1V291 +kzi IAll 

at 
q#2-91) 

w2 
- = D2V2@2+k12 IA2, 
at 

%4l-@2) 

(24) 

(25) 
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where Dl and II2 are the relative diffusion coefficients of I3 towards Al and 
A2 respectively. The reasonable assumption that D1 and Dz are equal can be 
made, since Al and A2 are the same molecule: 

Dl =D2=D 

3.1.2. Time euolu tion terms of $I and $2 for o G r < (J’ 
In the absence of intersystem crossing between Al and AI, we would 

write for example for Al 

=NVI ‘IBil - + NVlkd [B;] 
at 

where [Bz] and [Bi] are the values of [Bl(r, t)] and [B2(r,t)] respectively 
for u < r Q u’. 

When there is an exchange between Al and A2, following the same 
principle as in Section 3.1.1, this becomes 

NV1 [B;(t + dt)] &(t + dt) = {NV,[B;(t)] + 4nN~x’~D(a[B~] /ar),c - 

-~&WW~)~INLW(~ -Wd + 
+ NV, [B;(t + dt)] kzl dtEJz(t + dt) 

which leads to 

NV dD%] 
’ dt 

- k,NV,CB;(t)l + 

+ NV,k, #- {[B;(t + dt)] - [B;(t + dt)]} 
1 

and 

s= IA21 

dt 
--k,l& + k21 ~,C#J ; -&I 

a”, 4nNo’ 2D [AI 1 -= 
dt NVI 

- kc& + km FA2l (& - 4:) 

3.1.3. Time evolution of [A, ] and [A21 
The rates of change of [Al ] and [AZ] with time are given by 

d[&l - = - (klo + k12 
dt 

+ k.~(DW-%Ad + kaI&l 

d[&l 
dt 

= -(k#,+kzl + kcdCW&i)I&l + klz[Arl 
(27) 

The set of six relationships (25), (26) and (27) defines the evolution of 
the reacting system. 
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3.1.4. Rddems arising in the solution of the system 
As the mathematical system defined is non-linear, it is not possible to 

find an analytical solution in Laplace or Fourier spaces. The only poesibility 
is to carry out a numerical resolution leading to the values of [AI] and [As] 
and therefore to the yield of energy transfer from AI and Az to B. One 
example is shown in Figs. 6 and 6 where & and #z are represented to illustrate 
the effect of the exchange between AI and Aa. 

3.1.5. Remark on ‘%uperquenching*’ 
An interesting example is the case where AZ for instance is not liable to 

be quenched by B (ka = 0) whereas Ai can be quenched. Under these condi- 
tions &( r, t) is always higher than #1 (r, t) and its contribution to the value of 
+, (r, t) leads to a value of $J; much greater than that which would be expected 
in the absence of exchange between AI and As. This constant “feeding” of 
$1 leads to a deactivation which is more effective than when kls = km = 0. 

This effect of %uperquenching” is pictured in Figs. 6 and 6. 

3.2. St&y of the particular case where kc1 = kc2 
3.2.1. Expression of & and $i 
The system detined in Section 3.1 cannot be solved in the general case 

but a resolution can be carried out when kc1 = kCz. Under these conditions 
wehaveindeed&=#,=#and& = I$; = $O since the diffusion and the 

I 2 

r/d-+ 

Fig. 6(a) (for caption see overleaf) 
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I? I 

(b) 

0 
I 

2 
WV'1 



0 

(d) 

I 2 

Fig. 6. Time evolution of the distribution function for r > d (probability of formation of 
Al,% = 0.4; probability of formation of Agl d12 = 0.6; 0’ = 10 A; D = 1.0 X lo* cm2 s-l ; 
klo - 05x10*s-1;k 
(J= 10&g 

gu - 10’ 8-l ; ([B]) = 0.1 mollql ; k,l/ko = 9; ka/& s= 0.25): 9) 
=k21=0,Al~A~;(b)o=10~,k~~=0,kg~-0.26~10 s-l,AIcA2; 

(c)o=10~,k12=k21=109s- ,Al?*tA2;(d)o=6~,k12==k21=109s-1,Al~A2. 
The distribution functions& and @2 are plotted for the following times (in nanoseconds): 
t = lo-%I2 for n = 0 - 14. 

disappearance of B around Al and A2 are identical. The system giving + is 
then reduced to 

w 
- =DA$ 
at 

w3) 

d@ 
-NV.- 

dt 
+ kc@ 

The solution of such a system has already been carried out [S] , leading 
to the following value* of #O(T) of #(r, t) at distance u’: 

*In the case where CY(/~ + 1) < i, which is the usual case. 
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---_ --_ 

___‘t____------_-______ 

-__---- 
----__--- _--- 

q __- 

o4 I I I I 1 I* 
0.1 0.2 0.3 0.4 OS O-6 

0 .,I'2 

Fig. 6. Time evolution of & and & (values of the distribution functions $1 and $2 in the 
reacting range) under the same conditions as those given in Fig. 5. 

= - - 2ap 1 
@O(7) p + 1 

r(l + 7) 
“xp~(~)lT~erfc~(~)7112j f 

with y = cl- 4(p + 1)a}l12 and where /3 = k,/ko, a: = i {l - (~/a’)~) and 
T = Dtla2. 

In particular, when (Y = 0 we obtain the relation 

1 
#I(7) = p+1 + 

P 
- expI(P + 1)‘7} erfc{@ + l)+*} 
P+l 

(29) 

(30) 

This relation is close to that proposed by Nemzek and Ware [ 51, by 
Owen [ 151 and by Collins and Kimball [ 161. However, this expression 
corresponds to the case where o’ = u. These authors assume u’ > u, but do 
not take into account the accumulation of B corresponding to the term 
~KGWIW. 

For values of 7 greater than about unity (i.e. t around 10V1’ s in usual 
solvents) these relations reduce to 

P 1 
@O(T) * -& 11 + - p + 1 (n7)1’2 1 

(31) 
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A l/P h VP 
7. 7_ 

/ 
/ 

a/ 
/ //’ 

/’ 
/ 0 ,I 

/ /’ 
s_ / 

/ 5_ 
/ /// 

/ /’ 
/ 

/ 
/ 

/ 
3_ / 3_ 

/ 
/ 

/ 

4 0 I I I 0 I I 1 I- n 2 4 6 6 IO o+ 2 4 6 B 

'I,< (B)> UWW’.~ 1,< (Et)> mole -1.1 

(a) (b) 

0) 2 4 6 8 

l/<(B)> mole -1.1 

(c) 

Fig. 7. Variations of the inverse of the yield p of transfer from Al and Aa to B, with the 
inverse of the concentration ([B]) of the acceptor (probability of formation of Al, al = 
0.4 ; probability of formation of AZ, a2 = 0.6; u’ = 10 A; D = 0.1 x lo-” cm2 s-l ; klo = 
0.2x109 s- 1 ; km = 0.8 X log s-l ; kc/k0 = 3): (a) Al % As, km = kp = 0 (relation (35)); 
(b) Al Z At, k12 = 0, ka = 0.2 X log 6-l (relation (35)); (c) Al ?+t As, klz = 0.8 X lo0 
8 -l, ml kn = 0.2 x 10g s (numerical solution). In each case curve 1 is drawn neglecting static 
quenching and non-stationary diffusion, curve 2 is drawn assuming u = U’ = 10 a (no 
static quenching) and curve 3 is drawn taking into account both static quenching and 
non-stationary diffusion {o = 6 A). 

3.2.2. Time evolution of [A, ] and [AZ] when kCl = kc2 and kB1 = 0 
The resolution of system (27) cannot be carried out analytically except 

in particular cases. However, a numerical solution can be obtained and leads 
to the results shown in Fig. 7. 

In the case where ku = 0, system (27) can be reduced and solved, lead- 
ing to an approximate solution for the mean concentration of A1 under 
constant excitation: 
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(C&l) 
kokc 

-1 

W~lh~m-o 
= II exp (-NV~([B]))(l + 

ko+k, 
r;([B]) 

) 
(32) 

where 7; represents the natural lifetime of AI (l/r: = klo f k12) and 

&(I’) = iexp (-CQU - Xiu”‘) du 
0 

with 

and 

A; = 
20’ 

o (nD71) V2 
CXBI) 

AlSO 

C&l 

CAlI o 
= exp(-NV;([B])) exp(--aIt -btl”) 

where [A,] o represents [A,] at time t = 0 with 

(33) 

kc2ko 20’ 

b = (k, + ko)2 (rrD)1’2 
WI} 

From this simplified relationship the time evolution of A2 can IX 
calculated. 

(1) In the cam+ when k12 = 0 

CA21 

M21° 
= exp(-NV;([B])) exp(--a,t -bf1j2) 

where [A2]“represents [A21 at time t = 0 with 

1 
a2=7+ 

72 
kpf.;o WW 

andT;= l/(kzo + km) = l/km in the present case. 
(2) When k12 f 0 

exp(--NVi([B])) 
IA21 = a2-al 

[k12[AI]“exp(--a~t-bt1~2) + 

+ ((a2 - al)CA21”- k,21A~l”~~p(--a2~--b~1’2)l 

leading to 

([Azl) 1 
= 

G(6h2h I” + M21”) 

exp(-NV;([B] )) x 

([A2lhm=o a2 --al 

m.) + 
(a2 --a1WW’--k121A~l~ 

WG) (34) 
(12 I 
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with 

20’ 
hi = (&g)l/2 

kc2koGWW 1 + kcko 

(kc +w2 ( 
k + k 6iWl) 

C 0 1 

and 

I&) = jexp(--aau- I&u~‘~) du 
0 

3.2.3. Yield of sensitization 
In the case of AI this yield is readily expressed using relation (22) 

Pl = 1 --I(x;)~~~(-NV;([B])) (1 + kktk; 
0 c 

r;([Blf 

However, in the case of A2 the calculation is more complicated. We define 
the probability at time t = 0 a~p~,~. Then 

P2.s = 1 - exp(--NV;{[B])) 

We define the probability at time t > 0 asp,,,. Then 

P2.d = I- 
(CA21) 

- P2.8 
([A21 ) ttBl>-0 

This leads to the following expression of the total sensitization yield by 
AIandA2: 

1(X;) exp(-NV;([B])) 
PA~,A~-~B=~I 

a14 I 
+ 

+ cy2 l- (exp(-A’V;([B]))) X 

1 
X 

Gr”z 
r;(T;k+1 + ar) 7; - T; 

X 

I(G 1 
+ ((02 --ah2 

I(&) 
-~12%1- 

a1 a2 1) 
(35) 

This complicated relationship was used to draw the curves shown in 
Fig. 7 which show the complex influence of ([B]) on the yield of sensitixa- 
tion. Taking into account the experimental accuracy and the number of 
parameters involved, it does not seem likely that this type of experiment for 
the determination of ~1, ~2, T:, r& u’ etc. can be easily exploited. Then, as 
we have pointed out in the inlroduction, high concentrations of acceptor B 
are often required and it is often necessary to look for very effective reactions 
the rates of which are diffusion controlled, in order to characterize excited 
states of short lifetime_ Thus, we have shown how difficult it is to obtain 
specific parameters from experimental data when two excited donor states 
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A1 and AS interact and have a short lifetime (about 1 ns for example). In 
contrast, if the lifetimes of A1 and AS are long enough (much more than 
10 ns in usual solvents) linear relationships such as those presented in ref. 1 
can be successfully used. 

3.2.4. Case where there is no exchange between Al and A2 
In this particular case, we have therefore kzl = k12 = 0 and the kinetic 

treatment of the sensitization process can be carried out. This has been done 
in the case of reactions with diffusion-controlled kinetics [4, 13,141. Rela- 
tionship (35) yields 

PA,.A,+B = “1 + (y2 - exp(-NV;([B]>) 
d(G) + “2md 
a& a24 t 

(36) 

which is illustrated in Fig. 7. 

4. Conclusions 

We have shown in this work the tricky problems that arise when the 
experimenter wishes to carry out a complete kinetic treatment of the sensiti- 
zation reaction of a species B by two electronically excited species A1 and AS 
which interact. When the lifetime of these latter species is relatively long 
(much more than 10 ns in usual solvents) the relationships reported in ref. 1 
remain valid as long as the concentration of acceptor is low enough to prevent 
static quenching. In contrast, for shorter lifetimes of the donors, or for 
solvents of higher viscosity, non-stationary diffusion is no longer negligible 
and static quenching occurs. These phenomena alter greatly the kinetic 
relationships describing the reacting system. 
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Nomenclature 

A reactive species 

A*, AI, A2 excited states of a reactive molecule 

(IAl I), ([Azl) mean concentrations of Al and A2 under continuous excitation 

([AI])(cBI)=o, mean concentrations of Al and A2 in the absence of B 

~[A,])([B])=o 
B reactive species 

[B(r,t)l, I&lr,t)l, local concentrations of B molecules around A or A*, Al and A2 

IBz(r,f)l respectively 

[B”I, [%I, [%I local concentrations of B molecules between CJ and u’ relative to 
AorA*,Al andA 



WI) 
D,Dl,Dz 

? 
k(r) 
ko 
kc, kc1 a kc, 

b,(t) 
k, ho, klx, ho, h 

N 
NI(~), N2(t) 

P,PIrP2 
PA,,A1-cB 
r 

t 

Vl 

v; 
o2 
Greek symbols 
(Y 
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mean concentration of B molecules in the bulk of the solution 
diffusion coefficients relative to A or A*, Al and A2 
time evolution operator 
flow of particles 
rate constant of the reaction of one molecule A with one molecule B 
diffusional rate constant 4xNo’D 
bimolecular chemical rate constant of the reaction of B with A 
or A*, Al and Aa 
apparent rate constant of reaction 
rate constants of the disappearance anh formation of A or A*, Al 
and A2 in the absence of B 
Avogadro’s number 
number of molecules Al and A2 at time t 
probabilities of photosensitization from A or A*, Al and A2 
probability of sensitization of B* from both the Al and A2 states 
distance between A or A*, Al and A2 and B 
time 
reaction volume 
apparent reaction volume 
laplacian operator 

coefficient equal to + {l - ( o/o’)a) 
probabilities of formation of the two excited states Al and A2 
coefficient equal to kc/k0 
coefficient equal to {l - 4( p + 1 )a]1’2 
encounter distance 
limit of the “reaction volume” 
[BIr,t)ll(Bl) 
configurational distribution functions relative to A or A*, AI and 
A2 
values of $(r, t) between u and U’ around respectively A or A*, Al 
and A2 
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